
Integration of Support Vector Machines and

Mean-Variance Optimization for Capital Allocation
David Islip 1 Roy H. Kwon 1 Seongmoon Kim 2

1Department of Mechanical and Industrial Engineering, University of Toronto 2School of Business, Yonsei University

Preliminaries

Cardinality Constrained Portfolio Selection

[1] was the first to propose selecting a portfolio of assets to optimize a trade-off

between risk and expected return.

Investors generally prefer portfolios with fewer assets (lower cardinality) due to frictions

such as transaction costs, motivating the following optimization problem:

min
x

xᵀΣx s.t. 1ᵀx = 1, rᵀx ≥ rmin, |supp(x)| ≤ K, x ≥ 0
(Card-MVO)

where
A portfolio is represented by x ∈ RN

+
r ∈ RN denotes the estimated expectation of the random returns

Σ ∈ RN×N denote the covariance of the random returns

rmin denotes the investor’s minimum required expected return

K ∈ [N ] representing a cardinality limit

|supp(x)| denotes the number assets receiving capital for investment

Card-MVO admits a mixed integer quadratic formulation that is amenable to commercial

solvers: Let z ∈ {0, 1}N denote binary variables such that zi = 0 =⇒ xi = 0 ∀I ∈ [N ].

Asset Screening Tools for Investment

Investors prefer to have an asset screening tool that explains why a particular asset is or

is not in the portfolio [2].

Each asset i has a feature vector y(i) ∈ Y ⊂ Rp where Y is a feature space defined by

various asset attributes, such as price-earnings ratios and market capitalization.

One can represent an asset screening tool by a hyperplane H(w, b) : = {y | wᵀy + b = 0}
where (w, b) ∈ Rp+1. The hyperplane acts as a screener and classifies asset i as eligible
for investment if wᵀy + b > 0 and ineligible if wᵀy + b < 0.

Objective

There are two main drawbacks associated with the approaches mentioned above:

1. Card-MVO does not consider the structure of the assets in their associated feature

space.

2. Data-driven approaches that construct hyperplane-based screeners do not consider the

risk profile of the resulting portfolio in their estimation.

Figure 1. The desired outcome (right) shows how an asset screener could capture the structure of the feature

space. In the desired outcome, the circled assets differ from the decision made by Card-MVO because they

violate an investor’s sense of eligibility based on an asset-screening hyperplane.

Objective: Address issues 1 and 2 and compare the proposed approach’s financial

performance with Card-MVO.

Mixed Integer Programming Approach

Model Rationale: jointly identify a portfolio x and hyperplane H(w, b) such that the

portfolio has desirable risk-return properties and the hyperplane accurately classifies the

assets selected by the optimizer.

H(w, b) classifies assets as eligible (zi = 1) or ineligible (zi = 0).

Binary variables t ∈ {0, 1}p are introduced such that tj = 0 =⇒ wj = 0 ∀j ∈ [p] to ensure

q < p features are selected, resulting in the following optimization problem

min
x,z,w,b,ξ,t

x>Σx + ε

(
1
2

‖w‖2
2 + C

N
1>ξ

)
(SVM-MVO)

s.t. − M(1 − zi) + 1 − ξi ≤ (y(i))ᵀw + b ≤ Mzi − 1 + ξi, ∀i ∈ [N ] (1)

r>x ≥ rmin, 1>z ≤ K, x ≤ z (2)

1>t ≤ q, −U‖w‖∞
t ≤ w ≤ U‖w‖∞

t (3)

x ∈ ∆N , z ∈ {0, 1}N , (w, b, ξ) ∈ Rp+1 × RN
+ , t ∈ {0, 1}p

(4)

where
(1) - (3) model the hyperplane separation, portfolio and feature-selection constraints, and ∆N is simplex,

U‖w‖∞
and M are big-M constants, and C represents the relative preference for separation over margin,

and ε weighs the asset-screening objective against the portfolio objective.

SVM-MVO determines H(w, b) by solving the support vector machine (SVM) problem

with features {y(i)}N
i=1 and labels 2z − 1 [3].

Integrated Parameter Selection Strategy

Compared to Card-MVO, SVM-MVO introduces additional parameters (C, q, ε, M, U‖w‖∞
).

We develop a parameter selection strategy to respect the following principles:

Principle #1: Degenerate solutions (w = 0) are useless. We select C and q to avoid

degenerate solutions.

Principle #2: big-Ms should not exclude any optimal solutions. We select M and U‖w‖∞
to

avoid excluding optimal solutions.

Principle #3: the risk of any portfolio obtained from SVM-MVO should be within 1 + κ of

the risk of any portfolio obtained from Card-MVO. Given κ, we select ε such that any x
obtained from SVM-MVO satisfies xᵀΣx ≤ (1 + κ) xCardMVOΣxCardMVO.

Principles 1-3 =⇒ the features {y(i)}N
i=1 and the excess risk tolerance κ are the only

additional parameters required for SVM-MVO (in addition to those required by

Card-MVO).

Experimental Results (In-Sample)

Figure 2. Efficient Frontier for MVO, Card-MVO, and the SVM-MVO model. ε is set so that the risk of any

SVM-MVO solution is within (1 + κ) of Card-MVO’s risk.

Experimental Results (Out-of-Sample)

We consider two datasets to test the SVM-MVO methodology: one of stocks from the

S&P 500 and one dataset of exchange-traded funds (ETFs). Each dataset also has an

associated feature space Y to describe the assets at each re-balancing point. For both

datasets, we construct sixty-five technical analysis indicators.

A rolling time window backtest with semi-annual rebalancing is performed. Turnover

constraints of the form ||x − x0||1 ≤ C0 are added in all the models and periods where x0
denotes the portfolio from the previous period. Figure 3 shows results on the S&P 500

dataset.
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Figure 3. Wealth relative to Card-MVO by turnover limit C0 and cardinality limit K .

Conclusion

A new portfolio selection model:
Augments cardinality-constrained optimization with a preference for portfolios where a low-dimensional

hyperplane separates eligible and ineligible assets

Presents convex mixed-integer quadratic programming models for joint portfolio and hyperplane

selection that are amenable to commercial solvers.

A principled parameter selection strategy: Ensures valid big-M values, risk control, and

informative hyperplanes.

Empirical demonstration of financial performance: Results show improved

out-of-sample risk-adjusted returns compared to cardinality-constrained mean-variance

optimization.
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