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Motivation
Two-Stage Stochastic Programming

Stochastic programming is a decision-making framework that has succeeded in many areas, including
finance, healthcare, and logistics.

Two-stage stochastic programming makes here-and-now decisions while accounting for future uncertainties
and available recourse actions
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Motivation
Two-Stage Stochastic Programming

The decision maker selects a first-stage decision y by solving:

min
y

h(y) +Q(y) s.t. y ∈ Y, y ∈ Rs1
(2SP)

where h is a function modeling the cost of the stage-I decision, Y is the feasible set for first-stage decisions,
ω ∈ Ω represents the uncertainty distributed according to the probability measure P,

Q(y) = EP[Q(y , ω)] is the expected recourse cost with Q(y , ω) denoting the recourse cost of the first-stage
decision y when uncertainty ω is realized:

Q(y , ω) = min
z

g(z , ω) s.t. z ∈ Z(y , ω), z ∈ Rs2
(Stage II)

where g models the recourse cost for uncertainty ω in sample space Ω ⊆ Rd , Z(y , ω) is the feasible set of
recourse actions given the first-stage decision y and uncertainty ω
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Motivation
Scenario Reduction

2SP is intractable due to multi-dimensional integrals or exponentially many scenarios. Often, it requires
considering a large finite subset Ξ of possible outcomes, and solving the 2SP defined on Ξ:

min
y∈Y∩Rs1

h(y) +
1

|Ξ|

|Ξ|∑
j=1

min
z∈Z(y,ξ(j))

g(z , ξ(j)) (2SP-SAA)

scenario reduction replaces Ξ with a set of K scenarios ζ1..K such that K << |Ξ| while maintaining
solutions that perform well when evaluated on Ξ (Dupačová et al., 2003)
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Motivation
Context Matters

Distribution of outcomes often depends on contextual information x known at decision time

Dataset of context-scenario pairs D̃ = {(x (i), ξ(i))} used to estimate conditional distribution pθ(ω|x)
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Proposed Approach
Overview

Map contextual information x to surrogate scenario set ζ1..K via some parametric mapping f ϕ

How can we use a dataset of context-scenario pairs D̃ to estimate f ϕ so that the ζ1..K predicted by
f ϕ(x) yield high quality first-stage decisions
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Proposed Approach
Method # 1: Distributional Contextual Scenario Reduction

D = {(x (i),Ξ(i))} denote a large dataset of context and observed distributions conditional on the context

min
ϕ
Ldistribution(ϕ) :=

1

|D|

N∑
i=1

d(P(ϕ, x (i)),Q(Ξ(i))) (DCSR)

where P(ϕ, x) = 1
K

∑K
ζ∈f ϕ(x) δζ and Q(Ξ) = 1

|Ξ|
∑
ξ∈Ξ δξ are the empirical measures associated with the sets

f ϕ(x) and Ξ respectively and d is a distance metric between the distributions

Stability bounds for 2SP (Römisch, 2003; Rachev & Römisch, 2002) =⇒ consider integral probability
metrics: dF (P,Q) = supf∈F |EP[f (ω)]− EQ[f (ω)]|

where F is a class of real-valued bounded measurable functions that correspond to difference distance (ex.
1-Wasserstein corresponds to 1-Lipshitz functions)
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Proposed Approach
Method # 1: Distributional Contextual Scenario Reduction

Maximum mean discrepancy (MMD), corresponds to F = {f ∈ H : ∥f ∥∞ ≤ 1} where H denotes a
Reproducing Kernel Hilbert Space (RKHS) with associated kernel k : Ω× Ω→ R (Gretton et al., 2012)

Sample complexity, computational complexity, ease of implementation, and sampling structure motivate
choosing MMD as a distance measure

let the dataset formed by the product of the contexts and associated observed distributions be denoted by
D̃ = {(x , ξ) | ξ ∈ Ξ, (x ,Ξ) ∈ D} then:

LMMD(ϕ) :=
1

|D̃|

|D̃|∑
j=1

(
− 2

K

K∑
i=1

k(ξ(j), f (i)
ϕ (x (j))) +

1

K 2

K∑
i=1

K∑
i′=1

k(f (i)
ϕ (x (j)), f (i′)

ϕ (x (j)))
)

(MMD Loss)

Sampling from the joint distribution of (x , ω) is all that is required!
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Proposed Approach
Bi-level Problem’s Problems

The goal of scenario reduction is to select the surrogate scenarios ζ1...K so that the 2SP-SAA solution
defined by ζ1...K performs well on the large set of scenarios Ξ

This corresponds to the bi-level problem:

min
ζ(1),...,ζ(K)

h(y(ζ1...K )) +
1

|Ξ|

|Ξ|∑
j=1

g(z(y(ζ1...K ), ξ(j)), ξ(j))

s.t. z(y(ζ1...K ), ξ) ∈ argmin
z∈Z(y(ζ1...K ),ξ)

g(z , ξ) ∀ξ ∈ Ξ (SP)

y(ζ1...K ) ∈ argmin
y,z1,...zK

h(y) +
1

K

K∑
i=1

g(z i , ζi ) (ζ-SAA)

y ∈ Y, z i ∈ Z(y , ζ)

(BI-SAA)
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Proposed Approach
Bilevel Problem’s Problems

The bi-level problem can be heuristically solved via gradient descent:ζ ← ζ − η ∂ l̄Ξ/∂ζ

where the upper-level cost is given by l̄Ξ(ζ1...K ) = h(y(ζ1...K )) + 1
|Ξ|

∑|Ξ|
j=1 g(z(y(ζ1...K ), ξ

(j)), ξ(j))

(a) The loss l̄Ξ(ζ) plotted against two components of the surrogate
scenario ζ. The gradients are sparse.

(b) Approximating the loss surface with a neural network has a
smoothing effect (Grigas, Qi, et al., 2021).
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Proposed Approach
Problem Driven Contextual Scenario Reduction

The problem-driven approach aims to solve:

min
ϕ
Ltask(ϕ) :=

1

|D|

N∑
i=1

l̄Ξ(i)(f ϕ(x (i))) (PCSR)

which is amenable to sampling context-scenario pairs since:

Ltask(ϕ) =
1

|D̃|

|D̃|∑
i=1

l(f ϕ(x (i)), ξ(i)) (Task-Loss)

where l(ζ1...K , ξ) = h(y(ζ1...K )) + g(z(y(ζ1...K ), ξ), ξ)

Evaluating l(ζ1...K , ξ) requires solving (ζ-SAA) and a single subproblem (SP) to obtain y(ζ1..K ) and
z(y(ζ1...K ), ξ), respectively.
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Proposed Approach
Problem Driven Contextual Scenario Reduction

Motivated by the bi-level problem, a neural architecture is proposed to model the downstream loss

Zharmagambetov et al. (2023) and Lee et al. (2022) also use neural architectures to approximate losses

The proposed architecture is inspired by Dumouchelle et al. (2022)
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Proposed Approach
Problem Driven Contextual Scenario Reduction
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Proposed Approach
Method # 2: Static Problem Driven Contextual Scenario Reduction

Globally approximate l(ζ1...K , ξ) by Eψ via sampling ζ1...K , ξ over a specified input distribution. Then, the
obtained approximation is used to guide the learning for f ϕ

The input samples and associated targets are denoted by
Dloss = {((ζ(i)1...K , ξ

(i)), l (i)) where l (i) = l(ζ
(i)
1...K , ξ

(i))}Nloss
i=1

min
ψ

1

|Dloss|

Nloss∑
i=1

(Eψ(ζ
(i)
1...K , ξ

(i))− l (i))2 ((ζ
(i)
1...K , ξ

(i)), l (i)) ∈ Dloss

Given a trained loss-net, the approximate task loss is defined as:

L̃task(ϕ) :=
1

|D̃|

|D̃|∑
i=1

Eψ(f ϕ(x (i)), ξ(i)) (Appx-Task-Loss)

directly minimizing the approximate task loss tends to maximize the error of the resulting task-net
predictions =⇒

min
ϕ
λL̃task(ϕ) + LMMD(ϕ) (Static-PCSR)
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Proposed Approach
Method # 3: Dynamic Problem Driven Contextual Scenario Reduction

Zharmagambetov et al. (2023) and Lee et al. (2022) both note that learning networks to approximate a loss
globally is a challenging task since the input space is high dimensional ΩK+1.

Instead, they propose using the loss-net to construct local approximations around the predictions from the
task-net dynamically.

Given a batch B ⊂ D̃, dynamic training corresponds to the following dynamics at iteration t:

ψt ← ψt−1 −∇ψ
1

|B|
∑

(x,ξ)∈B

(Eψ(f ϕt−1(x , ξ)− l(f ϕt−1(x), ξ))
2 Loss step

ϕt ← ϕt−1 −∇ϕ
1

|B|
∑

(x,ξ)∈B

λEψt (f ϕ(x), ξ) + L
(B)
MMD(ϕ)) Task step

(Dynamic Training)
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Experimental Results
Two-Stage Portfolio Selection Problem

Edirisinghe and Zhang (2013) consider a 2SP for asset selection that considers uncertain forecasts in the
second stage.

max (µ(0))⊺y portfolio − γ||y trade||1 − λ(y portfolio)
⊺Σ(0)y portfolio + d

ns∑
i=1

πiQi (y portfolio, y trade)

s.t y trade = y portfolio − y initial position

where µ(0), Σ(0) represents the expectation and covariance of asset returns, d represents a discount factor
for expected second stage cost.

Forecast i ∈ [ns ] occurs with conditional probability πi |x and profit Qi (y portfolio, y trade), given by:

max (µ(i))⊺zportfolio − γ||z trade||1 − λ(zportfolio)
⊺Σ(i)zportfolio

s.t. z trade = zportfolio − y portfolio, 1⊺zportfolio = 1

where superscripts (i) and (2) denote the regime-dependent information and second stage variables.
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Experimental Results
What does CSRO look like for the Two-Stage Portfolio Problem?

Setting: 50 Assets, a reasonable autoregressive model for asset returns (that is hidden), constant covariance

Figure: CSRO maps context to surrogate scenarios and bypasses conditional estimation, sampling, and scenario reduction
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Experimental Results
Timing

For evaluation purposes, sample 1000 different contexts and sample 50 scenarios per context
D = {x (i),Ξ(i)}1000i=1 with |Ξ(i)| = 50 and D̃ = {(x , ξ) | ξ ∈ Ξ, (x ,Ξ) ∈ D}

Set 800 instances as training and 200 instances as validation with Dtrain, D̃train and Dval and D̃val

Method DCSRO Static PCSRO Dynamic PCSRO

Data Generation Time
(1000 instances 50 scenarios each )

2.6 729.5 729.5

Task Net 1099.5 1610.5 4215.7
Loss Net 0 12010.2 12010.2Training Time
Total 1099.5 13620.7 16225.9

Solution Calculation Time
(1000 instances 50 scenarios each)

40.5 43.49 46.15

Table: Training Times (seconds)

Solving a single instance of 2SP via the deterministic equivalent takes 79.1 seconds

Evaluating the ζ − SAA solutions over the scenarios takes ≈ 764 seconds
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Experimental Results
Out of Sample Performance

Mean 75th Percentile (Q3) 25th Percentile (Q1)
Method Dynamic PCSRO Static PCSRO Dynamic PCSRO Static PCSRO Dynamic PCSRO Static PCSRO
λ

0.00001 21.7 3.8 89.6 79.0 -50.8 -76.3
0.00010 16.4 6.6 78.8 81.0 -49.1 -54.9
0.00100 15.8 17.7 87.6 82.5 -51.7 -35.3
0.01000 24.2 20.4 79.6 92.5 -43.4 -47.5
0.10000 22.6 7.7 95.8 72.7 -42.3 -62.5
1.00000 22.9 -25.5 88.9 44.3 -30.8 -108.1

Table: PCSRO’s excess returns over DCSRO statistics (bps)
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Summary and Next Steps

Summary
▶ Contextual scenario reduction offers a fast and effective way to generate scenarios in a problem-driven manner

▶ At decision-time, the proposed approach is independent of the number of scenarios and offers significant
computational advantages

▶ Problem-based contextual reduction offers improved out-of-sample performance over the proposed
distribution-based approach

Next Steps
▶ Testing on other problems (i.e., discrete optimization problems)

▶ Testing against standard non-contextual benchmarks (i.e., K-means and fast heuristics for Wasserstein scenario
reduction)

▶ Sensitivity analysis concerning various parameters (i.e., K)
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Thank You!

We look forward to your questions
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