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Introduction to Two-Stage Stochastic Programs

Two-stage stochastic programs (2SPs) are a widely adopted decision-making tool that are
described by the following setting:

▶ A ‘here-and-now’ decision y ∈ Y is made, incurring an immediate cost h(y)
▶ An uncertain event ω ∈ Ω is then realized, with ω drawn from distribution P
▶ Afterward, the decision maker selects a recourse action z ∈ Z(y , ω)
▶ The decision maker optimally reacts to ω, given y , and chooses a recourse action that

minimizes the cost q(z , ω), where q represents the recourse cost in scenario ω

y → ω → z (2SP ABCs)

▶ For example, a product manufacturer must allocate capacity to machines (y) before
knowing product demand (ω)

▶ Once the product demands are known, they create an optimal production plan (z)
▶ 2SPs are applied in fields such as logistics, portfolio management, and manufacturing

(Ntaimo, 2024)
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Introduction to 2SP
Problem Setup

The decision maker wishes to solve

min
y

h(y) +Q(y) s.t. y ∈ Y, y ∈ Rs1
(2SP)

where

▶ Q(y) = EP[Q(y , ω)] is the expected recourse cost

with the optimal recourse cost recourse

Q(y , ω) = min
z

q(z , ω) s.t. z ∈ Z(y , ω), z ∈ Rs2 (Stage II)
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Contextual Stochastic Optimization

▶ Suppose the decision maker is
manufacturing parts for home builders

▶ The Bank of Korea has lowered interest
rates to 3.25%

▶ How does this change our decision y?
▶ Information known to the decision maker

at decision time is referred to as context x
▶ The decision maker aims to solve 2SP

with costs evaluated using Pω|x
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Source: tradingeconomics.com | The Bank of Korea
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Contextual Scenario Generation for 2SP
Problem Setup and an Existing Approach

▶ They do not have access to Pω|x , and instead only have access to a joint sample (historical data)

S = {x (i), ω(i)}ni=1

▶ There is a contextual stochastic optimization (CSO) zoo (Estes and Richard, 2023)

This suggests the following approach

Optimization with Scenario Generation

▶ A dataset of observations is used to estimate a parametric model.

▶ Sampling from a parametric model of the conditional scenario distribution yields a large 2SP

▶ The number of scenarios is reduced and the optimization is performed over the reduced set of
scenarios
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Contextual Scenario Generation for 2SP
The main idea

The goal is to directly go from x to a small set of scenarios ζ1...K = (ζk)
K
k=1 ∈ ΩK by selecting

f : x 7→ ζ1...K from function class F (e.g. ReLu networks producing K scenarios)

▶ By bypassing the scenario generation step, the time between context and decision-making will be
decreased while still unlocking the value of stochastic solutions

▶ The proposed approach is situated in the CSO zoo: major pros consisting of feasibility,
decision-time tractability, and value of stochastic solutions

The figure below highlights the proposed approach

Contextual Scenario Generation and Optimization
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Maximum Mean Discrepancy Distance

▶ A Reproducing Kernel Hilbert Space H (RKHS) with associated positive semi-definite kernel
k : Ω× Ω → R is considered

▶ The squared maximum mean discrepancy allows us to measure the distance between distributions

▶ Gretton et al. (2012) showed that the squared maximum mean discrepancy between Pη and Pω is
given by

d2
GMMD

(Pω,Pη) = E(ω,ω′)∼Pω [k(ω, ω
′)] + E(η,η′)∼Pη [k(η, η

′)]− 2Eω∼Pω,η∼Pη [k(ω, η)]

▶ There exists a rich theory associated with RKHSs that lead to some desirable properties
(concentration inequalities, generalization guarantees, links to stability theory of 2SPs)

▶ Specification of k determines the distance

Proposed Methodologies 7 / 29



A Distributional Approach

▶ Select f to minimize a distributional distance between f (x) and Pω|x ... in expectation
over Px

▶ Distributional Contextual Scenario Generation (DCSG):

min
f ∈F

Ldist(f ) := Ex∼Px

[
d
(
Pf (x),Pω|x

)]
▶ where Pf (x) =

1
K

∑K
k=1 δfk (x) denotes an empirical measure associated with the K

scenarios f (x)
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A Distributional Approach
▶ Using the squared MMD distance implies Ldist(f ) can be written as

Ldist(f ) = C + E(x,ω)∼Px,ω

[
1

K 2

K∑
i=1

K∑
i ′=1

k
(
fi (x), fi ′(x)

)
− 2

K

K∑
i=1

k
(
ω, fi (x)

)
︸ ︷︷ ︸

:=ℓMMD(f (x),ω)

]
,

▶ where C = Ex∼PxE(ω,ω′)∼Pω|x

[
k(ω, ω′)

]
is a constant with respect to f

▶ yielding an empirical risk minimization:

min
f ∈F

LMMD(f ) := E(x,ω)∼Px,ω [ℓMMD(f (x), ω)]

▶ We select the energy kernel, k(ω, ω′) = −∥ω − ω′∥2 due to its desirable properties. For
example
▶ K = 1 reduces to least-squares regression (the first ever contextual approach)
▶ Considers some of the underlying geometry (Feydy et al., 2019)
▶ Results Ldist being a metric

▶ Specify the parameterization for f and optimize f via gradients
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A Problem-driven Approach

▶ We obtain a first-stage solution by solving (2SP) using ζ1...K = f (x)

y(ζ1...K ) ∈proj
y

argmin
y ,z1,...zK

h(y) +
1

K

K∑
i=1

q(z i , ζi )

y ∈ Y, z i ∈ Z(y , ζi ) ∀i ∈ {1, ...,K},

(ζ -SAA)

▶ which has an optimal solution set Y∗(ζ1...K ) :={
y ∈ Y : h(y) +

1

K

K∑
i=1

q(z i , ζi ) ≤ v∗(ζ1...K ), z i ∈ Z(y , ζi ), i ∈ {1, . . . ,K}

}
,

where v∗(ζ1...K ) is the optimal objective value of (ζ-SAA)
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A Problem-driven Approach
▶ Select f such that the 2SP solutions on f (x) produce the highest quality set of optimal

(ζ-SAA) solutions Y∗(f (x)) according to Pω|x
▶ We measure the quality of the optimal solution set Y∗(f (x)) by the best possible

two-stage performance among solutions in Y∗(f (x)). This corresponds to

f (x) ∈ argmin
ζ1,...,ζK

min
y∈Y∗(ζ1...K )

h(y) + Eω∼Pω|x [Q (y , ω)]

holding (almost surely) with respect to Px .

▶ Relaxing the constraint that all y ∈ Y∗(ζ1...K ) must be the same in every ω, yields the
following

min
f ∈F

E(x,ω)∼Px,ω

[
min

y∈Y∗(f (x))
h(y) + Q (y , ω)

]
(Opt-PCSG’)

▶ Suggesting the following loss function

ℓopt(ζ1...K , ω) := min
y∈Y∗(ζ1...K )

h(y) + Q (y , ω)

Proposed Methodologies 11 / 29



Evaluating the Optimistic Loss

Evaluating ℓopt(ζ1...K , ω) is equivalent to solving

ℓopt(ζ1...K , ω) = min
y ,z,z1,...zK

h(y) + q(z , ω) (Opt-Search)

s.t. h(y) +
1

K

K∑
i=1

q(z i , ζi ) ≤ v∗(ζ1...K ) (1)

y ∈ Y, z ∈ Z(y , ω), z i ∈ Z(y , ζi ), ∀i ∈ {1, . . . ,K}.

▶ In addition to linear programs and convex programs with multiple solutions, the optimistic
approach is generally amenable to mixed-integer programs (MIP) with convex relaxations

▶ If (Opt-Search) is difficult to solve, we can settle for a feasible solution by solving (ζ-SAA)
and (Stage II) (easy for 2SP)

▶ (Opt-Search) reduces to solving (ζ-SAA) and (Stage II) when (ζ-SAA) exhibits unique
solutions
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Gradient Sparsity
Solving Opt-PCSG’ via gradient-based methods is not easy since the gradients of the objective
with respect to the surrogate scenarios are sparse.

Ex. K = 1, unique solutions, n = 1, f = (ζ1, ζ2)
T

(a) The loss plotted against two components of
the surrogate scenario ζ.

(b) Approximating the loss surface with a neural
network has a smoothing effect.
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Neural Network Approximation
We propose a neural architecture inspired by Patel et al. (2022)’s architecture, to model ℓopt

Embedded 

Figure: Loss-Net Architecture

How to train? → use f MMD to generate dataset from contextual observations {x (i), ζ
(i)
1...K}

n
i=1 with

ζ
(i)
1...K = f MMD(x) → fit Eψ with {(ζ(i)1...K , ω

(i)), ℓopt(ζ
(i)
1...K , ω

(i))}ni=1
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Replacing the Loss with the Approximate Loss

Embedded 

Figure: Replace the true downstream loss with the task-net approximated loss
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With MMD Regularization

▶ Optimizing the approximate task-loss con produce f , such that ζ
(i)
1...K = f (x (i)), i = 1, ..., n

are ‘far’ from ζ
(i)
1...K originally used to train the loss approximator

▶ Idea: regularize the approximate task loss by the MMD loss to select f ϕ

min
ϕ

1

n

n∑
i=1

Ê (f ϕ(x (i)), ω(i)) + λℓMMD(f ϕ(x (i)), ω(i)), (Static-PCSG)

▶ This approach with K = 1 is equivalent to Zharmagambetov et al. (2024)’s approach
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Minimizing the Approximate Loss Maximizes the Approximation Error

Figure: The relationship between the DCSG, Static-PCSG and Dynamic-PCSG approaches
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Contextual Newsvendor Problem

▶ Each day, a newsvendor purchases y newspapers at unit-cost c with a budget constraint:
y ≤ u

▶ The vendor sells as many papers as possible at a unit price q and can return unsold papers
at a salvage price r < c

▶ Contextual information x , such as day of the week, weather, and previous sales, is
observed before purchasing

▶ Demand ω is unknown at the time of purchase, after which the newsvendor optimally sells
z and salvages w papers

▶ They wish to solve: miny cy + Eω∼Pω|x [Q(y , ω)] s.t. y ∈ [0, u] where
Q(y , ω) = minz≥0,w≥0 −qz − rw s.t. z ≤ ω, z + w ≤ y
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Experimental Setup

▶ Distribution of contextual information: Context x follows a 2D normal distribution,
mapped to demand distribution Pω|x over 200 points via a random neural network
f Random. Demand has mean 15.1 and std. deviation 0.25

▶ Sample: n = 500 samples of (x , ω); models MMD (DCSG), Static, and Dynamic trained
on this set

▶ Model Architectures: f ϕ is a fully connected ReLU network, selected via a random

search optimizing L̂MMD on a 20% hold-out set. Loss network Eψ architecture is selected
similarly

▶ Evaluation: Models tested on i = 1, ..., nval = 100 out-of-sample x (i)
val and their associated

P
ω|x (i)

val

. First-stage solution evaluated using 2SP objective, considering surrogate scenarios

ζ
(i)
1...K = f (x (i)) (full process repeated 20 times)

▶ Comparison Metric: True 2SP Objectives v
(i)
MMD, v

(i)
Static, v

(i)
Dynamic, and optimal

newsvendor solution v
(i)
2SP computed per validation observation

Experimental Results 19 / 29



Two Benchmaks
The Expected Value Solution

▶ Determined by considering the newsvendor problem with a single scenario given by E[ω|x ]
▶ In practice, the conditional mean is not known, so this is a benchmark that cannot be

implemented

Analytical Contextual Solution

▶ The optimal solution to the newsvendor is

y∗ =


0 if q−c

q−r < FP(0),

u if q−c
q−r > FP(u),

F−1
P

(
q−c
q−r

)
otherwise.

where FP is the cumulative density according to P and F−1
P (α) is the α quantile of F .

▶ suggesting a quantile estimation approach to obtain a linear model F−1
Pω|x

(
q−c
q−r

)
= β⊺x ,

from the training sample (Liu et al., 2022)
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Out of Sample Gap – Cumulative Distribution Functions
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Takeaways and Conclusion

▶ The proposed approach is able to unlock the value of stochastic solutions

▶ Although, it is not as performant as problem-specific analytic approaches, it is competitive
in certain settings

▶ Regularization is critically important for the problem-driven approach

▶ Refining the loss approximation tends to improve performance

We perform similar exercises for other 2SPs from manufacturing and finance and demonstrate
computational and performance benifets.

Summary: A generic framework for generating scenarios contextually that is
performant and computationally tractable
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Thank you!
I look forward to your questions
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Contextual Scenario Generation for 2SP – Distributional

Select f : x 7→ ζ1...K from a vector-valued function class F such that the distributional distance
between the empirical distribution supported on f (x) and Pω|x is minimized in expectation over Px .

▶ F : hypothesis set for the task mapping, parametrized via feed-forward fully connected ReLu
networks.

▶ Approach: Distributional Contextual Scenario Generation (DCSG)

min
f ∈F

Ldist(f ) := Ex∼Px

[
d
(
Pf (x),Pω|x

)]
(DCSG)

▶ Pf (x) =
1
K

∑K
ζ∈f (x) δζ : empirical measure associated with f (x).

▶ d(·, ·): measure of distance between the distributions.
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Contextual Scenario Generation for 2SP – Problem Driven

Propose a problem-driven contextual scenario Generation approach (PCSG), that aims to select f such
that the 2SP solution defined on f minimizes the 2SP objective evaluated using Pω|x

min
f ∈F

E(x,ω)∼Px,ω [h(y (f (x))) + Q (y (f (x)) , ω)]

s.t. y (f (x)) ∈ proj
y

argmin
y,z1,...zK∈Y×Z(y,f (x))

h(y) +
1

K

K∑
i=1

q(z i , f i (x)) (a.s.)
(PCSG)
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Contextual Scenario Generation for 2SP – The Zoo
Estes and Richard (2023) provide an insightful segmentation of contextual methods for stochastic
optimization.
Conditional-density-estimation-then-optimize

▶ Estimate Pω|x then solve 2SP → does not directly address computational considerations

Direct-solution-prediction

▶ Form a mapping g : x 7→ y , from function class G to solve
ming∈G E(x,ω)∼Px,ω [h(g(x)) + Q(g(x), ω)] → necessitates problem-specific approaches due to
feasibility considerations

Predict-then-optimize

▶ Solve miny,z∈Rs1×s2 h(y) + q(z , ω̃) s.t y ∈ Y, z ∈ Z(y , ω̃) where ω̃ = h(x) ∈ Ω is a scenario
predicted by a learned h in some hypothesis class H

▶ Naive predict-then-optimize: select h via standard statistical approaches → does not consider
downstream costs

▶ Smart predict-then-optimize: select h such that the resulting solutions to perform well according
to E(x,ω)∼Px,ω [h(y) + Q(y , ω)] → typically problem-specific, suffers from vanishing gradients,
resulting solutions do not hedge against uncertainty (by nature of being a point predictor)
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Contextual Scenario Generation for 2SP – The Zoo

The proposed approach is related to the aforementioned areas as follows:
Conditional-density-estimation-then-optimize

▶ Addresses computational concerns by approximating Pω|x by a distribution supported on K
scenarios

Direct-solution-prediction

▶ (2SP) defined on K discrete scenarios preserves first-stage feasibility. The proposed approach
makes minimal assumptions regarding problem structure

Predict-then-optimize

▶ Using a distribution supported on K scenarios results in solutions with more optionality.
Furthermore, the loss network, tailored to 2SPs makes addresses the issues of gradients
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Contextual Scenario Generation for 2SP – Experimental Results
▶ A joint sample n = 500 is obtained as the decision maker’s historical data

▶ The proposed methods are trained on the joint sample and evaluated out-of-sample using neval
true conditional distributions Pω|x

▶ This process is repeated 20 times to ensure reproducibility

▶ Example: Table 1 shows a contextual version of Higle and Sen (1996)’s CEP1 2SP, comparing
methods across K

E[ω|x] MMD Static Dynamic

λ̃ - - 0.01 0.1 1 10 0.01 0.1 1 10

1 11.6% 0.0% 29.8% 0.2% 0.0% 0.1% 55.7% 2.1% 0.4% 0.3%
K 2 0.2% 15.1% 5.4% 4.9% 10.0% 12.6% 18.9% 9.2% 10.1% 13.8%

5 0.1% 13.9% 0.3% 7.9% 11.5% 14.2% 17.0% 13.2% 9.9% 11.9%

Table: (CEP1) Fraction of instances where each method has the lowest out-of-sample 2SP cost. The
regularizaton is set such that λ = DCSR Objective ∗ λ̃
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